Monday, February 13, 2012

It's a leaf! It's a root! It's a... wait, what?

Tmesipteris elongata at Otira, New
Zealand. Looks pretty normal, right?
At a basic, developmental level, plants have only three types of tissue: leaves, roots, and stems. Everything else is modified from these. The trunk of a tree is just a modified stem. A potato's tuber is a modified stem, too. The grasping tendrils of ivies and peas are modified leaves. Each part of a flower -- each petal, sepal, stamen, and carpel -- is a modified leaf. I could go on for quite a while. Those three basic tissues have been modified into the whole dizzying variety of plant parts, and that is an enormously diverse variety indeed.

Sometimes, though, diversity isn't exactly what is needed, and plants simplify instead. Tmesipteris is a genus of unusual, "primitive" ferns, found only in a few scattered places in the South Pacific. To a casual eye, it looks as though it has all the usual parts of a fern -- roots, stems, leaves, and even the sort of spore capsules you'd expect on such an ancient lineage. It takes a much closer look, by which I mean microscopes and developmental analysis, to realize that something is odd there.

Those broad green structures along its stem, the ones that do most of its photosynthesizing? They're not leaves. The thready bits at its base, the ones that attach it to the bark where it lives? They're not roots.

Every single part of a Tmesipteris plant is, if you look closely enough, a modified stem.

At some point in the evolutionary past, this plant's ancestors found that leaves, roots, the whole shebang, were all -- for whatever reason -- unnecessary. As I pointed out before, evolution ditches unnecessary things pretty quickly. Why bother with leaves when you can just grow flat bits of stem, and they'll photosynthesize just fine? Why bother with roots when you can just grow thready stem-anchors, and they'll keep you nailed down just as well as you need? Other plants have found plenty of reasons to bother, but for Tmesipteris, there just wasn't a need. It's gotten along very well this way for something like 400 million years, thankyouverymuch, and it has no reason to change now.

Image source: Liefting, Alan [Public domain]. Tmesipteris elongata. Retrieved February 12, 2012, from Wikimedia Commons: <>

Wednesday, February 8, 2012

The elements of life

Plants are, in large part, literally defined by photosynthesis. It's practically alchemical, that ability to live on just air and water and sunshine. Yes, we know precisely how the process works -- it's a complex chain of chemical reactions whose details I won't discuss here -- but that doesn't remove the wonder. Photosynthesis produces the sugars that fuel a plant's metabolism and make up the building blocks of its structure. It is the source of well over 90% of a plant's mass.

Now consider this: that mass is mostly pulled out of thin air.

Let me explain, and bear with me for a minute. Photosynthesis, to make it simple, takes water from the soil and carbon dioxide from the air, then uses energy from light to pull an oxygen out of them and rearrange their remaining atoms into sugar. The overall chemical equation looks like this:

6CO2 + 6H2O + energy --> C6H12O6 + 6O2

Six molecules of carbon dioxide plus six of water plus energy are rearranged to give one molecule of glucose -- sugar -- and six of oxygen. There are quite a lot of intermediate steps, but this is what you get when you look only at what goes in (CO2, water, sun) and what comes out (sugar, oxygen).

The really fascinating thing, when you think about it, is where each of those atoms comes from and where it goes. All the carbon and oxygen atoms in the sugar come from CO2: the ones from water are thrown away as oxygen. Water only contributes hydrogen, which is important but not very heavy -- about 4% of the sugar's mass. Sunlight is absolutely crucial to the process, but it contributes energy, not matter. In the end, fully 96% of the sugar's mass comes from carbon dioxide.

That's what I mean when I say that most of a plant is made of thin air. Nearly 96% of its mass comes from just that. The rest comes from water, plus a fraction of a percent from trace minerals in the soil. Air, water, and soil, all of it held together with sunlight: it's the stuff of life.

That's not just true of plants, either. In virtually every biome on Earth, plants form the bottom of the food chain. The sugars they make provide energy for them, and for the herbivores that eat them, and for the carnivores that eat the herbivores, and so on. Almost every living thing is ultimately made of plant matter. We are made of plant matter: everything humans eat can be traced back to a plant.

When you get right down to it, then, all life on Earth is made of very simple things. We are air and water and a little bit of soil, all held together with sunlight.